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Abstract

We present new necessary and su¢ cient conditions for checking if certain
players�posteriors can be rationalized by a common prior. We propose a simple
diagrammatic device to calculate the join and meet of players�knowledge parti-
tions. Each cycle in the diagram has a corresponding cycle equation that must
be satis�ed. Besides having a geometric interpretation, our conditions di¤er
from those in the literature because they do not use in�nities in any sense, not
even implicitly or indirectly, and they characterize the set of players�partitions
that automatically allow any posteriors to be rationalized by a common prior.
This indicates that to assume the existence of a common prior may be a di¤er-
ent assumption in di¤erent games. We also prove that to assume that posteriors
can be rationalized by a common prior is equivalent to assuming that players
have the same degree of optimism. We show how to construct a bet (in which it
is always common knowledge that all players have positive expected gains) over
any cycle whose corresponding equation is not satis�ed. A common prior will
exist when each player�s posterior about her opponents�types is independent
of her own type.
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1 Introduction

Economists have been studying the role of information in game theory extensively
over the last decades.1 In the traditional framework of an incomplete information
game, players have a common prior distribution over the set of possible states of the
world. Then, after observing a private signal, they update their beliefs in a Bayesian
fashion. In the �nal stage, they choose actions and receive the payo¤s. Is the common
prior assumption equality important in every game? Are we arbitrarily imposing some
speci�c type of behavior by assuming the existence of a common prior? To answer
these questions we need to understand what kind of behavior is consistent with the
assumption that all posteriors come from a common prior. A step in this direction is
the characterization of such posteriors.2

We present new necessary and su¢ cient conditions for checking if a set of poste-
riors, one for each player, can be rationalized by a common prior. The only potential
di¢ culty in obtaining a common prior is due to the existence of cycles in the diagram
we introduce. Each cycle is associated to an equation. We describe these cycle equa-
tions and prove that all of them are satis�ed if and only if it is possible to rationalize
posteriors using a common prior. The cycles provide the link between geometry of
knowledge partitions and the algebraic characterization of rationalizability via cycle
equations.
Intuitively speaking, the assumption of rationalizability by a common prior is a

di¤erent requirement in di¤erent games. We exemplify this insight in 4 applications.
In the �rst, we consider the class of monotonic models, that is, games of incomplete
information in which the state space has a linear order and every player�s knowledge
partition respects this order, in the sense that every atom of every partition has only
consecutive states. Any game of 2 players where one of them has better information
than the other would be an example of a monotonic model.
In a second application a Cournot duopoly game with uncertain marginal costs is

studied. We reveal the equivalence between assuming that posteriors can be rational-
ized by a common prior and assuming that players have the same degree of optimism.
The third application proves that if each player has beliefs about her opponents�types
that are independent of her own type, then all cycle equations hold, and therefore,
posteriors may be rationalized by a common prior.3

The forth application deals with bets. It is well known that there is no bet for
which it is always common knowledge that all rational, risk neutral players have
positive expected gains if and only if posteriors may be rationalized by a common
prior. Therefore, the cycle equations characterize the non-existence of bets. For each
cycle such that the corresponding equation is violated, we provide an algorithm to

1For a recent survey on the use of knowledge in economics see Samuelson (2004).
2Our de�nition of posterior di¤ers from some authors. See section 2:2 and the remark there.
3The word type here has a di¤erent meaning than it has in Mertens and Zamir (1985), or Bran-

denburger and Dekel (1993). See section 5:3 for more details.
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construct a bet, over the states in the cycle, in which it is common knowledge that all
players have positive expected gains. Furthermore, in this case, there is an arbitrage
opportunity, that is, a market maker can intermediate this bet and make a risk free
positive pro�t in every state, even if she has no information about the likelihood of
any state of this cycle.

1.1 Literature Review

There are other necessary and su¢ cient conditions for the existence of a common
prior. Samet (1998a) represents possible priors for a player as the convex hull of her
types, and presents a separation theorem. He proves that there can be no disagree-
ment in expectation if and only if the posteriors can be rationalized by a common
prior. Samet (1998b) explores the Markovian structure of beliefs revision and shows
how priors can be expressed in terms of players�posteriors via iterated expectations
of random variables. His main result establishes another necessary and su¢ cient con-
dition for common prior existence: convergence of in�nite iterated expectations of
random variables. Our approach is based neither on iterated expectations, nor on
separation theorems. We present �nite algebraic conditions, each one with a �nite
number of terms. There is no in�nite regress. This is possible because of the intro-
duction of the geometric concept of a cycle in our diagram. This approach allows
us to characterize all bets over a cycle, an object not present in any of the cited
papers. The insight here is that disagreements necessarily come from disagreements
over cycles in �nite state space models. Moreover, depending on players�partitions,
there will be no cycles, and then, a common prior will automatically exist.4

Many authors studied no trade theorems and disagreement results. This includes
Milgrom and Stokey (1982), Geanakoplos (1992) and Morris (1994).5 Morris (1995),
Gul (1998) and Aumann (1998) discuss the common prior assumption. Morris (1996)
analyzes the behavior of speculative investors that have heterogeneous priors. Di
Tillio (2001) and Morris (2002b) extend Samet�s (1998b) technique based on Markov-
ian analysis, while Feinberg (2000) carries out the syntactic characterization of com-
mon priors. Lipman (2003) investigates the �nite order implications of the common
prior assumption. All of these papers present a di¤erent approach from ours. They
contain neither our diagrammatic representation of cycles, nor the corresponding cycle
equations.
Harsanyi (1967-1968) studies games with incomplete information. Mertens and

Zamir (1985), and Brandenburger and Dekel (1993) formalize Harsanyi�s work by
describing universal type spaces. Aumann (1976) introduces the partitional approach

4This is the case of what we call monotonic models of 2 players when their join partition has only
singletons, which is a commonly used class of examples. See our �rst application. Alternatively, in
some games, many cycles may exist. Then, the existence of a common prior will depend on several
restrictions involving players�posteriors.

5See more references of no trade theorems in Morris (1994).
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to study knowledge and common knowledge. He shows that if players have a common
prior they cannot agree to disagree, that is, it cannot be common knowledge that
they have di¤erent posterior probabilities over a given event. Monderer and Samet
(1989) generalize the notion of common knowledge, introducing common p-beliefs.
The next section describes partitions and beliefs. Section 3 introduces the cycles
and their associated equations. Section 4 completes our characterization of posteriors
admitting a common prior, while section 5 brings the applications. The appendix
contains all proofs.

2 Knowledge and Beliefs

2.1 Partitions

There is a �nite set of players, denoted J . Consider knowledge structures rep-
resented by partitions. Formally, player j�s knowledge is given by her partition
�j =

n
�j1; �

j
2; � � � ; �

j
l(�j)

o
of the state space S, which is assumed to be a �nite set

S = f1; 2; � � � ; ng, with n � 2, containing all possible worlds (or states of the world).
Each subset of the state space belonging to the partition �j is called an atom of �j.
Therefore, partition �j is a decomposition of S, that is, S = �j1 [ �

j
2 [ � � � [ �

j
l(�j)

,

with �ji 6= ?, 8 i 2 f1; 2; � � � ; l(�j)g, and �
j
i1
\ �ji2 = ?, 8 i1 6= i2, for some positive

integer l(�j). The traditional interpretation is that when the true state of the world
is !, player j learns that the true state lies inside the unique atom of her partition
containing !, which is denoted �j(!).6

As usual, it is said that partition �1 re�nes (or is a re�nement of) partition �2 if
and only if for any ! 2 S, the atom containing ! in �1 is a subset of the atom contain-
ing ! in �2, i.e. �1(!) � �2(!). For any collection of partitions f�j j j 2 Jg, their
join is de�ned as the coarsest common re�nement of this collection, and it is denoted
by 
 = _

j2J
�j =

�

1; � � � ; 
l(
)

	
.7 Similarly, the meet � = ^

j2J
�j =

�
�1; � � � ; �l(�)

	
is

de�ned as the �nest common coarsening of the collection f�j j j 2 Jg.

2.2 Posteriors and Priors

Consider the model (S; f�j j j 2 Jg). The posterior of player j is the collection
�j = (�j1; � � � ; �jn), where, for each state ! 2 S and player j 2 J , �j! denotes player j�s
belief that the true state is ! given that the true state belongs to the atom �j(!).8

6In examples partitions will be represented by Greek letters �, �, �, etc... For more details on
knowledge partitions, see Aumann (1976), Geanakoplos (1992a) and (1992b), or Rubinstein (1998).

7That is, 
 is the only partition of S satisfying both: (i) 
 re�nes �j , 8 j 2 J , and (ii) if � re�nes
�j , 8 j 2 J , then � re�nes 
.

8Here, the word "posterior" (of player j) represents a collection of probability measures, one
measure for each atom of j�s partition. By contrast, some authors use this word to express a single
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Consider a probability measure �j =
�
�j1; � � � ; �jn

�
over the space S and let

�j(B) =
X
!2B

�j!, for any event B � S. Measure �j is a prior for player j if for

any state ! 2 S, whenever �j (�j(!)) > 0, then:

�j! =
�j!

�j (�j(!))
(1)

The main question to be studied here is: given posteriors �j, with j 2 J , when
is it possible to �nd a common prior? To simplify the discussion we assume that
posteriors have full support.9

3 Cycles

The reason why there may exist no common prior is related to the existence of cycles
in the meet-join diagram. In this section we describe such diagrams, the cycles and
their associated equations.

3.1 Meet-Join Diagram

The next example introduces a diagrammatic representation of the model, called
meet-join diagram, which helps us to calculate the join and meet of partitions. To
help in the visualization, our example has only 2 players. Observe, however, that our
technique works in games with any �nite number of players. The formal de�nitions
are presented in the next subsection.

Example 1 (Meet-Join Diagram)
For any �nite space S, because the property

(� _ �)(!) = �(!) \ �(!), 8! 2 S,
holds for every pair of partitions �, � of S, the join and the meet of � and � can
be computed with a simple diagram. For example, consider the state space S =
f1; 2; 3; 4; 5; 6; 7; 8g and two players with partitions:

� = ff1; 6g ; f4; 5g ; f2; 7; 8g ; f3gg , � = ff1; 2g ; f3; 4g ; f6; 7g ; f5g ; f8gg
Partitions � and � have 4 and 5 atoms respectively. Both the join � _ �, and the

meet � ^ � can be calculated using the 4 by 5 matrix representation in �gures 1 and
2.

probability measure over the entire space S. In the latter case, such a measure is a function of the
true state of the world.

9If �j
�
�jr
�
= 0, for some j 2 J and �jr 2 �j , it is not possible to use the restriction (1). Then,

any posterior for player j is rationalizable inside this atom of her partition. On the other hand, if
we assume that �j

�
�jr
�
> 0, for all j 2 J and all �jr 2 �j , then, we cannot have �j1! = 0 and �j2! > 0,

for some ! 2 S, j1 and j2 2 J , otherwise there will be no common prior. The only non-trivial case
is when players�supports coincide. See Di Tillio (2001) for more on the general case.
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β

{1, 2} {3, 4} {6, 7} {5} {8}

{1, 6} 1 6

{4, 5} 4 5

{2, 7, 8} 2 7 8

{3} 3

α

Figure 1: Join and meet, "�rst" representation.

β

{1, 2} {7, 6} {8} {3, 4} {5}

{1, 6} 1 6

{2, 7, 8} 2 7 8

{4, 5} 4 5

{3} 3

α

Figure 2: Join and meet, "nice" representation.

Figure 1 shows partition � at the left hand side of a 4� 5 matrix, and partition �
on the top of this matrix. Inside the matrix, each state must be written in the same
row that contains this state in partition �, and in the same column that it appears in
partition �.
From this �rst representation we can calculate the connected component of each

state. Start at any state, for instance ! = 1, and draw all vertical and horizontal lines
from state ! = 1 to other non-empty cells. From each state that is reached, again,
draw all vertical and horizontal lines to other non-empty cells, and so on, until there is
no new non-empty cell that can be reached. Every state inside a cell that is reachable
from ! = 1 is, by de�nition, in the same connected component that the state ! = 1
is. In �gure 1, states ! = 2 and ! = 6 are directly reachable and states ! = 7, and
! = 8 are indirectly reachable from ! = 1. Therefore, the connected component of
state ! = 1 is f1; 2; 6; 7; 8g.
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After �nding all connected components, we may redraw the diagram, shifting rows
and columns, if necessary, to have each connected component isolated. The result,
called "nice" representation, can be seen in �gure 2. The light shaded states (top-left)
are in the connected component f1; 2; 6; 7; 8g, and the dark shaded states (bottom-
right) form the connected component f3; 4; 5g. The meet � ^ � is given by the set of
all connected components, that is:

� ^ � = ff1; 2; 6; 7; 8g ; f3; 4; 5gg

The join 
 = � _ � is given by the partition obtained looking at each non-empty
cell individually, that is:


 = ff1g ; f2g ; f6g ; f7g ; f8g ; f4g ; f3g ; f5gg

There are several edges and paths in the diagram.10 For instance, the path c
below may be represented by the following sequence of edges:

c = ([1; 6] ; [6; 7] ; [7; 2] ; [2; 1])

It turns out that path c is a cycle. On the other hand, the path ([8; 7] ; [7; 6] ; [6; 7] ; [7; 8])
will not be considered to be a cycle because the state ! = 7 is present in more than 2
di¤erent edges. �

3.2 Edges, Paths and Cycles

We introduce some necessary notation now.

De�nition 1 (Edges, Paths and Cycles)
Consider the model (S; f�j j j 2 Jg) and recall that 
 represents the join parti-

tion, i.e. 
 = �1 _ � � � _ �J =
�

1; � � � ; 
l(
)

	
.

(a) An (oriented) edge xp;q = [!p; !q], with !p, !q 2 S, p 6= q, is an ordered pair
of states, such that !p and !q are in the same atom of partition �j for some player
j 2 J . In this case, we say that xp;q has direction j.11
(b) The edge xp2;q2 is said to be consecutive to the edge xp1;q1 if and only if

q1 = p2. De�ne the opposite of edge xp;q, denoted �xp;q, by �xp;q = xq;p.
(c) A path is an k-tuple x = (x0;1; x1;2; � � � ; xk�1;k) of consecutive edges such that

for all i 2 f1; � � � ; k � 1g, xi�1;i and xi;i+1 have at least one di¤erent direction. Let
�x denote the opposite of path x, that is:

�x = (�xk�1;k;�xk�2;k�1; � � � ;�x1;2;�x0;1)

(d) The states !1 and !2 2 S are said to be in the same connected component
of the meet-join diagram if and only if there is a path from !1 to !2.

10See de�nition 1 ahead.
11An edge may have many directions.
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β1 β2 β1 β2

α1 1 2 α1 LL LH

α2 3 4 α2 HL HH

S = {1, 2, 3, 4} S = {LL, LH, HL, HH}

Figure 3: Two versions of the meet-join diagram in the duopoly example.

(e) A path c = (x0;1; x1;2; � � � ; xk�2;k�1; xk�1;k) is said to be a cycle if and only
if it has at least 2 edges, the edge x0;1 is consecutive to xk�1;k and each state in S
belongs to at most two edges of c.12 By de�nition, we will regard any �rotation of c�,
such as (x1;2; � � � ; xk�2;k�1; xk�1;k; x0;1) or (xk�1;k; x0;1; x1;2; � � � ; xk�2;k�1), as the same
cycle as c.13

3.3 Cycle Equations

De�nition 2 (Cycle Equations)
Consider the model

�
S;
�
(�j; �j) j j 2 J

	�
. For each cycle, if one exists, we will

associate an equation to it. Consider the cycle c, with k � 2 edges, given by:

c = (x1;2; x2;3; x3;4; � � � ; xk�1;k; xk;1),

where xi;i+1 = [!i; !i+1], and xi;i+1 has direction ji, with i 2 f1; � � � ; kg.14 Then, the
associated cycle equation is de�ned as:

�jk!1 :�
j1
!2
:�j2!3 � � � �

jk�1
!k

= �j1!1 :�
j2
!2
:�j3!3 � � � �

jk
!k

The next example provides some intuition for cycle equations.

Example 2 (Duopoly, Part 115)
Imagine that each duopolist in a Cournot game knows her own marginal cost,

which may be either low (L) or high (H), but is uncertain about her opponent�s cost.

12This last requirement does not allow that in a cycle we move from one state, say !1, to another,
say !2, and then to a third state, and then return to !2 and !1. See the last part of example 1.
13There is some language abuse in the de�nition of a cycle. Formally, a cycle would be an

equivalence class of paths, under the �rotation�relation.
14Because we de�ne state !k+1 as !k+1 = !1, then xk;k+1 = xk;1.
15Geanakoplos and Polemarchakis (1982), Gul (1998), Morris (2002b), among others, used the

partitions in this example.
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If a player has low (respectively high) cost, we refer to this player as a low (high)
type. To model this game, let S = f1; 2; 3; 4g, and players�partitions be denoted by
� and � respectively, where � = f�1; �2g, �1 = f1; 2g, �2 = f3; 4g, � = f�1; �2g,
�1 = f1; 3g, and �2 = f2; 4g. We de�ne types for the players as follows: in states
! 2 f1; 2g player 1 is low type, and in states ! 2 f3; 4g she is high type. Player 2
has low type if ! 2 f1; 3g, and high type if ! 2 f2; 4g. States may be relabeled as:

LL = 1, LH = 2, HL = 3, and HH = 4

Figure 3 shows two versions of the meet-join diagram associated with this example.
The version on the right hand side uses the new labels for the states, namely LL, LH,
HL, HH.
For a common prior to exist, posteriors must satisfy the following restriction:16

�23:�
1
4:�

2
2:�

1
1 = �

1
2:�

2
4:�

1
3:�

2
1 (2)

The expression at the left hand side of (2) may be interpreted as running over the
cycle of diagram 3 in counterclockwise direction, starting at the state ! = 1 (top-left),
and going down, right, up and left. The right hand side may be viewed as starting
from state ! = 1, and moving in the clockwise direction (right, down, left, up). The
cycle equation (2) is requiring that running over the cycle in both directions results
in the same value.
Another way of describing the left hand side of the cycle equation (2) is the pos-

terior that player 2 has, at her �21 atom, that player 1 is in her �
1
2 atom, i.e. �

2
3,

thinking that 2 is in her �22 atom, i.e. �
1
4, thinking that player 1 is in her �

1
1 atom,

i.e. �22, thinking that 2 is in her �
2
1 atom, i.e. �

1
1. The right hand side has a similar

interpretation. �

The following proposition links cycle equations, and consequently the meet-join
diagram, to the problem of common prior existence.

Proposition 1 (Cycle Equation Necessity)
Consider the model

�
S;
�
(�j; �j) j j 2 J

	�
, where S is �nite. Then, posteriors

may be rationalized by a common prior only if all cycle equations are satis�ed.

4 Common Prior Existence

So far, we have presented necessary conditions on the posteriors for making them
rationalizable by a common prior. Now, we show that these conditions are su¢ cient
as well by studying a certain system of linear equations.

16See propositions 1 and 2. The interpretation of this condition is presented below in this example
and in applications 1 and 2 ahead.
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4.1 The System

For each player j 2 J and index r 2 f1; � � � ; l(�j)g, let �jr denote j�s prior that the
true state is inside the atom �jr, that is:

�jr = �
j(�jr) (3)

Let �j = (�j1; � � � ; �
j
l(�j)

), 8 j 2 J . Each �jr, with j 2 J and r 2 f1; � � � ; l(�j)g,
will represent a typical variable in the system that we describe next. Let rj(!) be the
index of the unique atom in j�s partition such that ! 2 �jrj(!). Thus, it is possible to
�nd a common prior if and only if the following system of linear equations

�1r1(!)�
1
! = �

2
r2(!)

�2! = � � � = �
j
rj(!)

�j! = � � � = �JrJ (!)�
J
!, 8! 2 S, (4)

l(�1)X
r=1

�1r = 1 (5)

has at least one solution �j 2 Rl(�
1)

+ � � � � � Rl(�
J )

+ .17

De�nition 3 (System of Candidate Equations)
The linear system composed by equations (4) and (5) will be called the system of

candidate equations.

When there is a common prior, say e�, the system of candidate equations has a
solution. In particular, (4) holds. Hence, for any player j 2 J , the value �jrj(!)�

j
! will

be equal to the common prior that the true state is !. Mathematically:

f�! = �1r1(!):�1! = � � � = �jrj(!):�j! = � � � = �JrJ (!):�J!, 8 ! 2 S (6)

Example 3 (Duopoly, Part 2)

17Our system will have exactly n(J � 1) + 1 equations. All equations of the form
l(�j)P
r=1

�jr = 1, for

j 2 J � f1g, may be mathematically deduced from our system. To see why, consider the case of a
two-player game. Adding all equations in (4), we obtain:

l(�1)X
r=1

�1r =

l(�1)X
r=1

X
k2�1r

�1r�
1
k =

l(�2)X
s=1

X
k2�2s

�2s�
2
k =

l(�2)X
s=1

�2s

Because the summation in (5) is 1, the analogous summation for player 2 must also be 1. Here, we

are using the fact that
X

!2�j(k)

�j! = 1, for any player j and any state k 2 S.
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Again, consider the duopoly model (S; f�; �g), where � = f�1; �2g, �1 = f1; 2g,
�2 = f3; 4g, � = f�1; �2g, �1 = f1; 3g, and �2 = f2; 4g. Applying (4) and (5), the
system of candidate equations becomes:8>>>><>>>>:

�11:�
1
1 = �

2
1:�

2
1

�12:�
1
1 = �

2
2:�

2
2

�13:�
1
2 = �

2
3:�

2
1

�14:�
1
2 = �

2
4:�

2
2

�11 + �
1
2 = 1

(7)

There are 4 variables, namely �11, �
1
2, �

2
1, and �

2
2. To obtain a solution, posteriors

must satisfy the cycle equation (2). If (2) holds, the system has exactly 4 linearly
independent equations, and a unique solution. In this case, it is possible to obtain
a common prior. If (2) is not satis�ed, the system (7) has 5 linearly independent
equations and there is no common prior.18 �

4.2 Solution Existence

The existence of cycles creates the possibility that too many candidate equations
are linearly independent. If there are more linearly independent candidate equations
than variables, the system will not have a solution. However, when all cycle equations
are satis�ed, there will be at most as many independent candidate equations as the
number of variables. In this case, a common prior exists. Proposition 2 below is our
main result.

Proposition 2 (Cycle Equations: Su¢ ciency)
Consider the model

�
S;
�
(�j; �j) j j 2 J

	�
, where S is �nite. If all cycle equations

are satis�ed, then posteriors may be rationalized by a common prior.

The argument for proving the su¢ ciency of cycle equations is in the appendix. Its
basic idea is presented in the following example.

Example 4 (Duopoly, Part 3)

18If the �rst 4 equations were independent, then �11 = 0 = �
1
2. But this would violate the equation

�11 + �
1
2 = 1. Morris (2002b) used the following particular values for the posteriors:

�11 = 1, �12 = 0, �13 = 0, �14 = 1, and �21 = 0, �22 = 1, �23 = 1, �24 = 0.

He observed that it is not possible to have a common prior because there is no convergence of iterated
expectations. Using these particular values in the cycle equation (2):

�11:�
2
2:�

2
3:�

1
4 = 1 6= 0 = �21:�12:�13:�24

Consequently, by proposition 1, for these particular posteriors, it is not possible to �nd a common
prior.
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Again, consider the duopoly model. Assume that the cycle equation (2) holds.
Consider the function h : [0;+1)! R, de�ned as:

h(�11) = 1� �12,

where �11 2 [0;+1) and the value �12 is a function of �11 given by either one of the
formulas:19

�12 =

�
�12:�

2
4

�14:�
2
2

�
�11, or �12 =

�
�11:�

2
3

�13:�
2
1

�
�11

Because the cycle equation (2) holds, the value �12 is the same regardless of which
formula above we use to calculate it. Hence, the function h(�) is well de�ned. It is
also decreasing, with h(0) = 1 and lim

�11!+1
h(�11) = �1. We conclude that h(�) has a

unique �xed point. This �xed point, denoted �11, together with the corresponding �
1
2

form part of the solution to the system (7). The values of �21 and �
2
2 can be calculated

by (7). Thus, the common prior e� may be calculated by (6).
4.3 Uniqueness

If it exists, is the common prior unique? It depends on how many solutions the system
of candidate equations has, or equivalently, on how many connected components there
are.
Assume that all cycle equations hold. If the meet-join diagram has a single con-

nected component, then, there is a unique solution to the system of candidate equa-
tions, and therefore, a unique common prior. When there is more than a single con-
nected component (i.e. the meet has more than a single atom), there are in�nitely
many solutions to the system. However, solutions are unique up to the assignment of

arbitrary weights �m = �
j(�m) > 0, with m 2 f1; � � � ; l(�)g and

l(�)P
m=1

�m = 1, to the

connected components.20 Because
l(�)P
m=1

�m = 1, any set of l(�) � 1 weights uniquely
determines the remaining weight. Thus, the dimension of the space of solutions equals
to l(�)� 1.

5 Applications

In this section, we present a few examples. To simplify matters, part of the material
here is presented for games of 2 players only. Observe, however, that this is to facilitate

19To �nd the two formulas for �12 as a function of �
1
1, two equations of the system (7) were used

in the �rst formula, and two other equations were used in the second formula.
20Each posterior �j! acts inside a unique atom of the meet. Hence, posteriors have no saying in

the assignment of the weights �m. See an example in the appendix.
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the exposition and we can generalize it to games with more than 2 players.

5.1 Monotonic Models

If the state space is endowed with a linear order such that the partitions of all players
have only consecutive states in each atom, the model is called monotonic. In this case,
the respective meet-join diagram for games of 2 players is "stairs" shaped (shifting
rows and columns, if necessary), and cycles may only occur inside atoms of the join.
In the particular case when the join has only singletons, there will be no cycles, and
then, any posteriors may be rationalized by a common prior. This class of examples
contains all games of 2 players in which one player has a knowledge partition that
re�nes the other player�s partition.21 In particular, it includes all 2-player games
with one-sided uncertainty. The e-mail game is another example of monotonic model
whose join partition is made of singletons only.22 �

5.2 Optimism in the Duopoly Game

We return to the Cournot duopoly game. Recall that each one of two duopolists
knows her own marginal cost, which may be either low or high, but is uncertain
about her opponent�s cost. A player is low (respectively high) type if and only if
she has low (respectively high) marginal cost, denoted cL (respectively cH). More
precisely, let 0 � cL < cH , with cH being su¢ ciently small so that both players have
positive pro�ts in all states. As we show in the appendix, when a player observes her
own type, being a low type is good news because her pro�ts are higher, regardless of
her opponent�s type.23

From player 1�s viewpoint, the ratio of the probabilities that her opponent is high
type, with respect to being a low type, is �12

�11
when player 1 herself is low type, and

�14
�13
when she is high type. The greater �

1
2

�11
is, the larger player 1�s expected pro�ts will

be when she is low type. Similarly, the greater �14
�13
is, the larger player 1�s expected

pro�ts when she is high type.

De�nition 4 (Optimism)
The optimism of player j 2 J in the duopoly game, denoted Optj, is de�ned as:

Opt1 =
�12=�

1
1

�14=�
1
3

and Opt2 =
�23=�

2
1

�24=�
2
2

21For instance, see Levin (2001).
22The e-mail game is introduced in Rubinstein (1989). See also Samuelson and Binmore (2001),

and Morris (2002a). Observe, however, that the e-mail game has in�nite states, so our result does
not apply.
23Also good news would be the fact that her opponent is high type, but this information is not

available. See the formal analysis of the duopoly game in the appendix.
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Opt1 measures how much the ratio of player 1�s posterior that her opponent is a
high type, over the posterior that she is a low type, increases if player 1�s own type
would change from high to low.
Now, we have a general interpretation for the cycle equation (2). It may be

rewritten as
Opt1 = Opt2

In words, the cycle equation is saying that the optimism of both players must coin-
cide.24 This shows that the possibility of common prior existence is associated with
a behavioral assumption over the players. This is evidence that the possibility of
common prior existence is not only a naive technical modeling assumption. It may
also impose restrictions on behavior.
Observe that a su¢ cient condition for the cycle equation (2) to hold is that, for

each player, the posterior that her opponent is a high type, over the posterior that
she is a low type, is independent of her own type. Mathematically:

�12
�11
=
�14
�13

and
�23
�21

=
�24
�22

5.3 Beliefs that are Type Independent

We generalize the last observation about beliefs that are independent of the players�
own types.25 Formally, for each player j 2 J , let tj 2 T j denote j�s type, where
T j = f1; 2; � � � ;mjg, for some integer mj � 2, is the set of j�s possible types. Knowl-
edge partitions are such that each player knows her own type, but do not know her
opponents�types. Hence, the state space can be written as S =

N
j2J
T j. Let t�j denote

the pro�le of players�s type, except for player j.

De�nition 5 (Independent Beliefs)
We say that player j has independent beliefs if for every pro�le t�j 2

N
i2J�fjg

T i,

then j�s posterior about other players�types is independent of her own type.

The next proposition explains the relation between independent beliefs and the
common prior existence.

24Because our conditions require exact values for posteriors, a generic perturbation destroys our
cycle equation, Opt1 = Opt2. In this sense, the existence of a common prior seems to be very special.
Note, however, that among the collection of all binary relations that a set has, preference relations
are also a very special case. Nevertheless, most economic theory is built assuming that agents have
preference relations. See Morris (1995) for a deeper discussion of the common prior assumption in
economics.
25Here, the type of a player represents the states of the world inside a given atom of this player�s

knowledge partition. Some authors reserve the word type to describe the full hierarchy of beliefs
that the player has in the universal type space. See Mertens and Zamir (1985), or Brandenburger
and Dekel (1993).

13



Proposition 3 (Independent Beliefs Imply Common Prior26)
If all players have independent beliefs, then all cycle equations hold, and therefore,

posteriors may be rationalized by a common prior.

5.4 Bets

Samet (1998a) presents a version of a famous agreement result. He shows that a nec-
essary and su¢ cient condition for the non-existence of bets, with common knowledge
that all players have positive expected gains, is that posteriors may be rationalized by
a common prior. But we have presented necessary and su¢ cient conditions for this
to be true, namely the cycle equations. Therefore, we immediately have the following
corollary.

Corollary 1 (Bets)
All cycle equations are satis�ed if and only if there is no bet for which it is always

common knowledge that all players have positive expected gains.

This corollary provides an easy to check su¢ cient condition for the non-existence
of bets in which it is common knowledge that players have positive expected gain,
in terms of the partitions. If players�partitions have no cycles, we automatically see
that there will be no bets. This is the case of monotonic models of 2-player games
when the join has only singletons, for instance.

5.4.1 Bets over a Cycle - General Framework

Consider a model
�
S;
�
(�j; �j) j j 2 J

	�
and the cycle c, with k � 2 edges, given by:

c = (x1;2; x2;3; x3;4; � � � ; xk�1;k; xk;1),

where the edge xi;i+1 = [!i; !i+1] has direction ji, with i 2 f1; � � � ; kg.27 Hence, states
!i and !i+1 are in the same atom of partition �ji, for any player ji in the cycle c.
The associated cycle equation is:

�jk!1 :�
j1
!2
:�j2!3 � � � �

jk�1
!k

= �j1!1 :�
j2
!2
:�j3!3 � � � �

jk
!k

Let Jc represent the ordered sequence of players that compose the cycle c, that is,
Jc = (j1; j2; � � � ; jk), with all ji 6= ji+1 and j1 6= jk.
Let gji! represent the payo¤ of player ji, at state !, in a bet in which ji wins in

state !ji, loses in state !ji+1, and makes zero pro�t in all other states. In other words,
at !ji, player ji+1 transfers g

ji
! to player ji. Let the expected payo¤ of each player

26Thanks to Claudio Mezzetti who conjectured the general result.
27We de�ne state !k+1 as !k+1 = !1. Hence, xk;k+1 = xk;1. In fact, the players in the cycle could

appear more than once, as long as each player is not present in consecutive positions of the cycle.
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ji 2 Jc, at the atom of her partition that contains the states !ji and !ji+1 , be denoted
Eji. Then:

Ej1 = �j1!1 :g
j1
!1
+ �j1!2 :g

j1
!2

(8a)

� � � � � � � � � � � � � � � � � �
Eji = �ji!i :g

ji
!i
+ �ji!i+1 :g

ji
!i+1

(8b)

� � � � � � � � � � � � � � � � � �
Ejk = �jk!k :g

jk
!k
+ �jk!1 :g

jk
!1

(8c)

Transfers gji! are such that:

gj1!2 = �gj2!2 (9a)

� � � � � � � � � � � �
gji!i+1 = �gji+1!i+1

(9b)

� � � � � � � � � � � �
gjk!1 = �gj1!1 (9c)

We will normalize the payo¤s in such a way that gj1!1 = 1. Using this normalization
and solving the system of equations (8) and (9), we obtain that for each j 2 J :

gji!i+1 =
Eji

�ji!i+1
+
�ji!i :E

ji�1

�ji�1!i
:�ji!i+1

+
�ji�1!i�1 :�

ji
!i
:Eji�2

�ji�2!i�1 :�
ji�1
!i
:�ji!i+1

+ � � �+
�j2!2 � � � �

ji
!i
:Ej1

�j1!2 � � � �
ji
!i+1

�
�j1!1 :�

j2
!2
� � � �ji!i

�j1!2 � � � �
ji
!i+1

gjiji =
�Eji
�ji!i+1

�
�ji!i :E

ji�1

�ji�1!i
:�ji!i+1

�
�ji�1!i�1 :�

ji
!i
:Eji�2

�ji�2!i�1 :�
ji�1
!i
:�ji!i+1

� � � � �
�j2!2 � � � �

ji
!i
:Ej1

�j1!2 � � � �
ji
!i+1

+
�j1!1 :�

j2
!2
� � � �ji!i

�j1!2 � � � �
ji
!i+1

Therefore, the generalized expectations hiper-plane becomes:

Ej1

�1
+
Ej2

�2
+
Ej3

�3
+ � � �+ E

jk

�k
= �, (10)

where:

� =
�j1!1 :�

j2
!2
� � � �jk!k � �

j1
!2
:�j2!3 � � � �

jk
!1

�j1!2 :�
j2
!3
� � � �jk!1

,

and

�i =
�ji!i+1 � � � �

jk
!1

�ji+1!i+1
� � � �jk!k

, with i 2 f1; � � � ; kg

In particular, if � > 0, it is possible to �nd positive values Eji, with ji 2 Jc, satisfying
(10).
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5.4.2 Bets in 2-Player Cycles

Again, consider 2 players with the same knowledge partitions of the Cournot duopoly
example. Can they form a bet in such a way that one of them wins in a particular
state, say !0, and loses in all other 3 states? No because the player betting in !0
would not bet if she would lose for sure. Hence, by accepting the bet, the player
betting in !0 would reveal to her opponent in which atom of her partition she is in.
Thus, her opponent would accept the bet only if she is sure to win. Anticipating this,
the former player would never accept the bet.
A similar reasoning indicates that we can never expect to see a bet where one of the

players wins in states ! 2 f1; 2g and loses in states ! 2 f3; 4g (because player 1 would
reveal her atom), or bets in which one of the players wins in states ! 2 f1; 3g and loses
in states ! 2 f2; 4g (because player 2 would reveal her atom).28 We conclude that
the only bet in which it is always common knowledge that all players have positive
expected gains involves one of the players winning in states ! 2 f1; 4g and losing in
states ! 2 f2; 3g. This means that one player is betting that both players have the
same type, either ! = LL or ! = HH, and the other player is betting that they have
di¤erent types, either ! = LH or ! = HL.
Consider a lottery:

G = (g1; g2; g3; g4) ,

where gi 2 R represents the transfer from player 2 to player 1 if the true state of
the world ! reveals itself to be ! = i.29 Let E1G(�r) and E2[�G(�s)] denote the
expected gains of players 1 and 2, respectively, under lottery G, when they are in
atoms �r and �s of their knowledge partitions. Since the meet � ^ � is equal to S,
it is common knowledge that both players have positive expected gains if and only if
they have positive expected pro�ts regardless of the true state. Mathematically:

E1 [G(�1)] = �
1
1:g1 + �

1
2:g2 > 0, E1 [G(�2)] = �

1
3:g3 + �

1
4:g4 > 0,

E2[�G(�1)] = �21:(�g1) + �23:(�g3) > 0, E2[�G(�2)] = �22:(�g2) + �24:(�g4) > 0
Bets are only possible if there is no possible common prior. In a previous section

we learned that this means players have di¤erent optimism. If Opt1 < Opt2, player
1 wins the bet whenever the true state belongs to fLL;HHg, and player 2 wins in
fLH;HLg.30

5.4.3 2-Player Cycles with a Market Maker

Unless Opt1 = Opt2 holds, there is an arbitrage opportunity, that is, there is "space"
for a third party, for instance a market maker, to intermediate a bet, even if this ad-
28Again, in any such bet one party would only accept to enter if she knows that she will win for

sure, so the other player refuses to bet.
29A negative transfer means that player 1 is the one who is transferring money to player 2.
30Conversely, if Opt1 > Opt2 player 1 wins the bet if the true state belongs to fLH;HLg and

player 2 wins in fLL;HHg.
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ditional player, called player 3, has no clue about the true state. Formally, we assume
that player 3 is incapable of making any probabilistic estimation of the likelihood of
any state of S.
Suppose that Opt1 < Opt2. For each ! 2 S, let g1! be the transfer from player 3

to player 1 if the true state turns out to be !. Similarly, for each ! 2 S, let g2! be
the transfer from player 2 to player 3 if the true state turns out to be !. Thus, the
third party�s pro�t at state !, denoted g3!, is:

g3! = g
2
! � g1!, 8 ! 2 S (11)

To simplify the calculation, suppose that player 3 o¤ers bets such that players 1
and 2�s expected gains are independent of the atom they are, i.e. "1 = E1G(�1) =
E1G(�2) > 0 and �"2 = E2[�G(�1)] = E2[�G(�2)] > 0. This hypothesis is not
restrictive. In this case:

"1 = �11:g
1
1 + �

1
2:g

1
2 = �

1
3:g

1
3 + �

1
4:g

1
4, (12)

�"2 = �21:(�g21) + �23:(�g23) = �22:(�g22) + �24:(�g24) (13)

Changing units if necessary, we can assume that one of the payo¤s is unitary. Suppose
g14 = 1. Then, solving the system of equations (11), (12) and (13), we �nd that the
pro�t vector g3 = (g31; g

3
2; g

3
3; g

3
4) of player 3 will be on the hyper-plane:

g31
�12�

2
3�
2
4

+
g32

�11�
2
3�
2
4

+
g33

�12�
2
1�
2
4

+
g34

�11�
2
2�
2
3

=

= �+ "1:

�
�13:�

2
1 � �11:�23

�11:�
1
2:�

1
3:�

2
1:�

2
3:�

2
4

�
� "2:

�
�12:�

2
1 � �11:�22

�11:�
1
2:�

2
1:�

2
2:�

2
3:�

2
4

�
, (14)

where:

� =
�11:�

2
2:�

2
3:�

1
4 � �21:�12:�13:�24

�11:�
1
2:�

1
3:�

2
1:�

2
2:�

2
3:�

2
4

=
(Opt2 �Opt1) �14
�12:�

1
3:�

2
2:�

2
3

Choosing "1 and "2 su¢ ciently close to zero, this hyper-plane approaches arbitrarily
well the hyper-plane:

g31
�12�

2
3�
2
4

+
g32

�11�
2
3�
2
4

+
g33

�12�
2
1�
2
4

+
g34

�11�
2
2�
2
3

= �,

which intercepts the origin if and only if � = 0, or equivalently Opt1 = Opt2, that is,
exactly when it is possible that posteriors may come from a common prior.
Assuming that Opt1 < Opt2, then � > 0. Hence, the market maker can make

a risk free pro�t by choosing any g3 that satis�es (14), g3! > 0, for all ! 2 S, and
su¢ ciently small and positive values for "1 and �"2.
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6 Appendix - Proofs

Proof. (Proposition 1 - Cycle Equations: Necessity)
Consider the cycle c = ([1; 2]; [2; 3]; � � � ; [k; 1]), with k � 2. For all i 2 f1; � � � ; kg,

states i and i + 1 are in the same atom of partition �ji, for a collection of (not
necessarily distinct) players fj1; � � � ; jkg, with ji 6= ji+1 for all i 2 f1; � � � ; kg.31
Hence:

rji(i) = rji(i+ 1), for all i 2 f1; � � � ; kg ,
and this implies that:

�jirji (i)
= �jirji (i+1)

, for all i 2 f1; � � � ; kg

First case: posteriors have full support. In this case, we should multiply the
following candidate equations:

�jk1 �
jk
rjk(1)

= �j11 �
j1
rj1(1)

, �j12 �
j1
rj1(2)

= �j22 �
j2
rj2(2)

, � � � � � � , �
jk�1
k �jk�1rjk�1(k)

= �jkk �
jk
rjk(k)

After canceling all factors �jirji(i) , we obtain the associated cycle equation, that is:

�jk1 :�
j1
2 :�

j2
3 � � � �

jk�1
k = �j11 :�

j2
2 :�

j3
3 � � � �

jk
k

For the general case, suppose that there is a state, say ! = 1, and a player, say
j1 2 J , such that j1�s posterior that the true state is ! = 1 equals to zero, that
is, �j11 = 0. The, we must have �jk1 = 0, otherwise players j1 and jk cannot have a
common prior. But this forces both sides of

�jk1 :�
j1
2 :�

j2
3 � � � �

jk�1
k = �j11 :�

j2
2 :�

j3
3 � � � �

jk
k

to be equal to zero. This proves that if the system of candidate equations has a
solution, all cycle equations are satis�ed, concluding this proof.
Proof. (Proposition 2 - Cycle Equations: Su¢ ciency)
If all cycle equations are satis�ed, we will show now that the system has at least

one solution. Without loss of generality we may assume that the meet has a unique
atom. If this is not the case, the question of rationalizing a common prior is reduced
to �nding a common prior in each atom �m of the meet. As we saw, the assignment of
weights to these atoms is completely arbitrary. Thus, for each player j 2 J , consider
the state space decomposition S = �j1 [ �

j
2 [ � � � [ �

j
l(�j)

.
If all players have trivial partition fSg, posteriors coincide with priors and the

question of �nding a common prior is trivial. Suppose this is not the case, more
speci�cally, assume that player 1 has at least 2 atoms in her knowledge partition.
Consider the function h : [0;+1)! R, de�ned as:

h(�11) = 1�
l(�j)X
r=2

�1r,

31Recall that state k + 1 is the same as state 1, by de�nition.
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where all values �1r, with r 2 f2; � � � ; l(�j)g, are functions of �11 calculated through
the use of equations in (4). Since all cycle equations hold, each value �1r is well
de�ned, regardless of how was its process of calculation (which candidate equation was
used �rst, second,...). Hence, the function h(�) is well de�ned. It is also decreasing,
with h(0) = 1 and lim

�11!+1
h(�11) = �1. We conclude that h(�) has a unique �xed

point. This �xed point, �11, together with the corresponding values �
1
r, with r 2

f2; � � � ; l(�j)g, form a solution to the system (7). Thus, the common prior e� may be
calculated by (6).
Finally, observe that each variable in the solution must be positive (since a negative

or zero value would contaminate all connected component). Because
l(�1)X
r=1

�1r = 1, and

l(�2)X
s=1

�2s = 1, each �
1
r and each �

2
s must be at most 1. This concludes this proof.

Example 5 (Multiple Common Priors)
Suppose that there are 2 players, n = 15, l(�1) = 7, l(�2) = 6, l(�1 _ �2) = 11,

l(�1 ^ �2) = 3 and posteriors have full support. Then, our system has 13 variables
and 16 candidate equations. Moreover, there are at most 5 linearly independent cycle
equations. In other words, posteriors can be rationalized by a common prior if and
only if all 5 linearly independent cycle equations hold. If this happens, then there will
be only 11 linearly independent equations in the system of candidate equations. As
we have 13 variables, the space of solution will have dimension 2. This means that
there will be freedom to choose weights �1 > 0, �2 > 0, �3 > 0, with �1 + �2 + �3 = 1,
corresponding to the three atoms of the meet.
On the other hand, if, for instance, only 4 linearly independent cycle equations

hold, the system of candidate equations will have 12 linearly independent equations
and 13 variables. As we are not accepting zero priors over atoms of the meet, there
will be no solution. The freedom given by the existence of more than one atom in the
meet cannot compensate a failure of any cycle equation. �

Proof. (Proposition 3 - Independent Beliefs Imply Common Prior)
For each ! 2 S, denote by tj(!) the type of player j when the true state of the

world is !. Let �j (t�j j tj) represent j�s posterior that other players�types are t�j,
when j herself has type tj. If j has independent beliefs, we denote her posterior about
her opponent�s type pro�le simply by �j (t�j).
Consider the cycle:

c = ([!1; !2]; [!2; !3]; � � � ; [!k�1; !k])

where !p = (tjp ; t�jp) 2 S, for each p 2 f1; � � � ; kg. Consider its corresponding cycle
equation:

�j1(!1 j tj1(!k)):�j2(!2 j tj2(!1)) � � � �jk(!k j tjk(!k�1)) =
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= �jk(!k�1 j tjk(!k)) � � � �j2(!1 j tj2(!2)):�j1(!k j tj1(!1))
Because beliefs are independent, this can be rewritten as:

�j1(!1):�
j2(!2) � � � �jk(!k) = �jk(!k�1) � � � �j2(!1):�j1(!k)

But this is true because �j1(!1) = �
j1(!k), �

j2(!2) = �
j2(!1),� � � , �jk(!k) = �jk(!k�1),

by the de�nition of states !p. This proves this proposition.
Proof. (Corollary 1 - Bets)
This is immediate from the necessary and su¢ cient conditions in Samet (1998a)

and by ours, i.e. by proposition 2.
Cournot Duopoly
Let 0 � cL < cH , with cH being su¢ ciently small so that both players have positive

pro�ts in all states. Player 1 of type t 2 fL;Hg chooses quantity q1t such that:

q1L = argmax
q1

�
�11
�
q1
�
1� q1 � q2L � cL

��
+ �12

�
q1
�
1� q1 � q2H � cL

��	
q1H = argmax

q1

�
�13
�
q1
�
1� q1 � q2L � cH

��
+ �14

�
q1
�
1� q1 � q2H � cH

��	
Each type of player 2 has an analogous maximization problem to solve. Because the
argument is quadratic, �rst order conditions are also su¢ cient. Quantities q1L, q

1
H , q

2
L

and q2H are the solution of the linear system:8>><>>:
2q1L = 1� cL � �11q2L � �12q2H
2q1H = 1� cH � �13q2L � �14q2H
2q2L = 1� cL � �21q1L � �23q1H
2q2H = 1� cH � �22q1L � �24q1H

Claim 1 qjL > q
j
H

Proof. Let X1 = q1L� q1H and X2 = q2L� q2H . Then, subtracting the second equation
from the �rst and the fourth from the third:�

(�21 � �22)X1 + 2X2 = cH � cL
2X1 + (�14 � �12)X2 = cH � cL

Solving this system:

X1 =

�
2� (�14 � �12)

�
(cH � cL)

4� (�14 � �12)(�21 � �22)
, and X2 =

�
2� (�21 � �22)

�
(cH � cL)

4� (�14 � �12)(�21 � �22)

Because X1 > 0 and X2 > 0, we conclude that q1L > q
1
H and q

2
L > q

2
H . This proves

claim 1.

Claim 2 For each �xed type of player 2, the expected pro�t of player 1 is higher when
player 1 herself is low type.
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Proof. Let P j(!) denote the pro�t of player j at state !. After using the �rst order
conditions and simplifying, we �nd that the di¤erence between the expected pro�t of
a low type player 1 and the expected pro�t of a high type of player 1, both facing a
low type of player 2 is:

E1
�
P 1(LL)

�
� E1

�
P 1(HL)

�
= (q1L)

2 � (q1H)2,

which is positive because X1 > 0. A similar result holds when player 2 is a high type
and also for the expected pro�ts of player 2. This proves claim 2.

Claim 3 For each �xed type of player 2, the pro�t of a low type of player 1 is larger
than the pro�t of a high type of player 1.

Proof. To see this observe that:

2P 1(LL)� 2P 1(HL) = 2q1L
�
1� cL � q1L � q2L

�
� 2q1H

�
1� cH � q1H � q2L

�
=

= q1L
�
�11q

2
L + �

1
2q
2
H + �

2
1q
1
L + �

2
3q
1
H

�
� q1H

�
�13q

2
L + �

1
4q
2
H + �

2
1q
1
L + �

2
3q
1
H � cL � cH

�
=

=
�
�21q

1
L + �

2
3q
1
H

�
X1 + q1L

�
�11q

2
L + �

1
2q
2
H

�
� q1H

�
�13q

2
L + �

1
4q
2
H + cL � cH

�
Since

�
�21q

1
L + �

2
3q
1
H

�
X1 > 0 and q1L > q1H , to prove that P

1(LL) > P 1(HL) it is
enough to prove that �11q

2
L + �

1
2q
2
H > �

1
3q
2
L + �

1
4q
2
H + cL � cH . But, after some algebra,

this is equivalent to show that cH � cL > X1, which always holds.32 Similarly, we can
prove that P 1(LH) > P 1(HH), P 2(LL) > P 2(LH) and P 2(HL) > P 2(HH). This
concludes this proof.

Claim 4 P 1(LH) > P 1(LL) and P 1(HH) > P 1(HL). In words, regardless of her
own type, a player has more pro�t when her opponent is a high type.

Proof. Because P 1(LH) = q1L (1� q1L � q2H � cL) and P 1(LH) = q1L (1� q1L � q2H � cL)
a direct calculation reveals that:

P 1(LH) > P 1(LL), q2L > q
2
H ,

but claim 1 proves the last inequality. A similar argument shows that P 1(HH) >
P 1(HL). This proves this claim.
Characterizing Bets on the Duopoly Example
Let � 2

�
�12�

2
4

�11�
2
2
; �

1
4�
2
3

�13�
2
1

�
be arbitrary. Suppose that Opt1 < Opt2. Note that �14�

2
3

�13�
2
1
>

�12�
2
4

�11�
2
2
, so there are many possible values for �. Let one of the values g1 or g4 be an arbi-

trary positive number, and the other be such that g1 = �g4. Let g2 2
�
��11:g1
�12

; ��
2
4:g4
�22

�
,

32In fact, it not hard to see that cH � cL � 4X1 > 0.
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and g3 2
�
��14:g4
�13

; ��
2
1:g1
�23

�
be arbitrary. Again, ��24:g4

�22
> ��11:g1

�12
and ��21:g1

�23
> ��14:g4

�13

because Opt1 < Opt2, regardless of all previous choices. �
Bets on a Cycle - Two-Player Games
Consider the cycle:

c = ([1; 2]; [2; 3]; [3; 4]; � � � ; [2k � 1; 2k]) ,

where k is a positive integer number. Generalize the de�nition of players�optimism
in the following way:

Opt1 =
�12:�

1
4 � � � �12k

�11:�
1
3 � � � �12k�1

, and Opt2 =
�22:�

2
4 � � � �22k

�21:�
2
3 � � � �22k�1

De�ne the transfers gj! as before. The expected pro�ts of players 1 and 2, as well
as player 3 (market maker) pro�ts are:

E1 [G(�r)] = �12r�1:g
1
2r�1 + �

1
2r:g

1
2r, 8r 2 f1; � � � ; kg

E2 [�G(�s)] = �22s:g
2
2s + �

2
2s+1:g

2
2s+1, 8s 2 f1; � � � ; kg

where �22k+1 = �21, and g22k+1 = g
2
1

g3! = g2! � g1!, 8! 2 S

If Opt1 = Opt2, there is no bet. If Opt1 < Opt2, then, a feasible bet, i.e. a
bet in which it is always common knowledge that all players have positive expected
gains, is such that player 1 wins in states ! 2 f1; 3; 5; � � � ; 2k � 1g and loses in states
! 2 f2; 4; 6; � � � ; 2kg. If Opt1 > Opt2, player 1 wins in states ! 2 f2; 4; 6; � � � ; 2kg
and loses in states ! 2 f1; 3; 5; � � � ; 2k � 1g.
Normalize monetary units such that g11 = 1. The associated system has 4k equa-

tions and 4k � 1 variables. This extra degree of freedom imposes a relation among
all g3!, which is similar to (14). The constant term is similar to �, and its sign will
be the same as the sign of Opt2 �Opt1.
Choosing all E1 [G(�r)] and E2 [�G(�s)] su¢ ciently close to zero, player 3 has a

risk free pro�t, that is, she can �nd all g3! > 0. �
Cycles with 3 Players
We conclude with the following example. It shows how to construct a bet in a cycle

with 3 edges. Consider the model
�
S;
�
(�1; �1); (�2; �2); (�3; �3)

	�
, with S = fa; b; cg,

and such that:

�1 = ffa; bg ; fcgg , �2 = ffb; cg ; fagg , �3 = ffc; ag ; fbgg

Observe that in any sub-model with only 2 players it is always possible to �nd
a common prior because there is no cycle. Thus, player 1, for instance, will not be
able to explore (from her perspective), via a bet, an eventual di¤erence in beliefs with
player 2, unless player 3 comes along.
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Consider the model with all players now. Then, posteriors may be rationalized by
a common prior if and only if the following cycle equation holds:

�1a:�
2
b :�

3
c = �

1
b :�

2
c :�

3
a (15)

Now, assume that posteriors cannot be rationalized by a common prior. Hence,
by proposition 2, the cycle equation (15) does not hold. Consider the following bet
(lottery G) among the players. In state ! = a, player 3 pays ga > 0 to player 1. In
state ! = b, player 1 pays gb > 0 to player 2. Finally, at ! = c, player 2 pays gc > 0
to player 3. The expected pro�ts of players 1, 2 and 3 are either zero (in states ! = c,
a, b, respectively), or e1, e2, e3, respectively, where:

e1 = +�1a:ga � �1b :gb
e2 = +�2b :gb � �2c :gc
e3 = +�3c :gc � �3a:ga

Again, we may obtain e1 > 0, e2 > 0 and e3 > 0, as long as �1a:�
2
b :�

3
c > �

1
b :�

2
c :�

3
a.
33 The

expected payo¤s hiper-plane is:

e1�
�1b�

2
c�
3
a

�2b�
3
c

� + e2�
�2c�

3
a

�3c

� + e3�
�3a
� = �1a�

2
b�
3
c � �1b�2c�3a
�1b�

2
c�
3
a

We conclude that when players 1, 2 and 3 are present, each one of them can explore
the di¤erences in beliefs via the proposed bet whenever the cycle equation (15) does
not hold. �
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